AD=AU90 641

UNCLASSIFIED
| e !
A

Aneat”

BOEING AEROSPACE CO SEATTLE WA ENGINEERING TECHNOLOGY DIV F/6 16/4
NEW TECHNIQUES FOR TEST DEVELOPMENT FOR TACTICAL AUTOPILOTS USI-~ETC(U)
JUL 80 E H SHEMETA

Bfn SRS

. VN

v
k-

—
‘.
»

ADAO90641

DC FiLE copy

.

TECHNIQUES FOR JEST DEVELOPMENT FOR {TACTICAL
T AUTOPILOTS USING MICROPROCESSORS’

.
.}

ar

\] 2y pemean
. b are /

Acgonston For : \7 Edward H.. Shemeta '
i o T k/fs‘nmsmg-'remm-ogy Do

nasmouncas e Boeing Aerospace Company

uatificetion c . Seattle, Washington 98124

By _Lﬂ_._:__ DT I C
i e ELECTE

;.‘.v.::‘. ari/ar ,
Dhﬂz l S;uci.ul. OCT 20 |9m
I T
- I /

SUMMARY Uj& [Z % D

Advances in semiconductor technology have made it possible to introduce
increasingly complex digital logic in avionics, weapons and control
systems. However, the testing of such systems represents a new
problem. Test requirements of missile systems are now approaching the
complexity of aircraft themselves a decade ago. The costs of creating
test procedures for the new designs will be prohibitive if new methods
of test generation are not developed.

In the early 1970's, simulation methods were developed to generate test
patterns on computers to increase productivity. These methods, e.g.,
"LASAR', 'FAIRTEST', etc. were used successfully to support the A7-D/E
and the S3-A aircraft test development needs. These methods have been
also used to develop tests for E3-A, B-1 Avionics and IUS programs at
Boeing. :

As useful as these methods are, the computer costs for test generation
are becoming high. Also, the time required to create computer models
needed to support the teit generation process itself has become very
long. It has been estimated that to develop gate-level models for off
the shelf LSI (large Scale Integration) microprocessors and similar
devices would take a man-year. Since the development phases of such
programs are a year or less, the methods which worked so well in the
past are not keeping up with the new requirements.

At Boeing, research in the test development area has been directed at
developing new approaches that are applicable to the new technology.
The most promising approach is based on the use of algorithmic test
generation techniques instead of the classic truth table methods.

Using algorithms as the source for test code, it is not necessary to
store millions of test vectors in a tester or to run costly simulations
to generate the test vectors.

"This paper reports on a demonstration of the application of the method

to generate system level tests for a typical tactical missile
autopilot. The test algorithms are based on the autopilot control law.
When loaded on the tester with appropriate control information, the

Page 1

o _
}71“_'./ S, ? 7 5

“M‘@?\?‘“W

.., n S i T
B L4

)

Approved for Y 0 ooy

DISTRIBUTION STATRINT A |
1
Distribution Uni! Z.A:i',‘({ ﬁ

Ty
7;55«‘4\/\

nn%y

complete autopilot is tested to establish if the specified control law
requirements are met. Thus, the test procedure not only checks to see
if the hardware is functional, but also checks the operational
software. The technique also uses a ‘'learning’ mode to allow minor
timing or functional deviations from the expected responses to be
incorporated in the test procedures.

. A potential application of this test development technique is the

extraction of production test data for the various subassemblies. The
technique will ‘learn' the input-output patterns forming the basis for
development and production tests. If successful these new techniques
should allow the test development process to keep pace with
semiconductor progress.

INTRODUCTION

Technology advances in semiconductor design and manufacturing
techniques have made the miniaturization of high peformance systems a
practical and economical concept. The replacement of marginal and
sensitive analog hardware, such as servomechanisms and potentiometers
in computing circuits, with digital processing circuits has impacted
all aspects of electronic products. The result is the emergence of a
whole new generation of 'smart' instruments. The commercial success of
electronic games, etc., is a testimonial to the cost-effectiveness and
versatility of the new digital techniques.

The application of this technology to low cost digital autopilots for
small, highly accurate, terminally-guided missiles is particularly
advantageous. A reliable low cost 'smart' missile which is field
adaptable to a broad range of threats could be the ultimate next
generation field weapon.

However. it is not enough for a system to be constructed from low cost
parts and be functionally versatile. The system must be mnufacturable,
to assure low cost, and, more importantly, field supportable to achieve
its potential as a weapon.

Unfortunately, systems based on microprocessor technology present new
problems in developing effective production test procedures using
traditional methods. The probiem lies in the very advantages of such
systems, ie., the ability to change the system programming to meet new
requirements without changing the hardware. As the software changes are
made, the test procedures must likewise be modified. It is imperative
that the system test procedures be capable of being modified as rapidly
and effectively as the microprocessor software.

In this paper the traditional test approaches are reviewed as to thefr
adequacy in meeting the new requirements, and a new approach,
algorithmic test generation, will be outlined. This approach shows
promise in answering these new requirements. An example of algorithmic
test generation will be developed to illustrate the development of test
algorithms from system level design data.

. S vy
- --*a’.-.--.
o

.t e
—

N —— .

o T er—— : NI S SR iclgligaate ”—q

STATE OF THE ART IN DIGITAL TEST DEVELOPMENT

Early test generation methods in the vacuum tube era were based on
signal tracing techniques using scopes and waveform diagrams. Standard
input signals were generated and data flow was manually traced from
input to output. With good access to the vacuum tube sockets, the test
procedures were easy to develop and use,

With the advent of integrated circuits, the simple signal tracing
concepts were more difficult to document and the {nability to trace the
signals internal to the chip made the mechanics of signal tracing
peculiar to the individua) design approaches. This meant that the
maintenance personnel had to be trained to diagnose each peculiar
system. c

At that time the concept of developing tests for digital logic to
detect logic faults was developed. [1] The stuck-at-one, stuck-at-zero
fault concept was introduced and computer simulation methods were used
to evaluate test sequence effectiveness.

Following the development of simulators, varjous methods for automatic
test generation were developed. One of the first applications of such
techniques was the development of tests for the A7-D/E aircraft
avionics and its peculiar ground support equipment (PGSE).

For example, in this application [2] the logic schematics were encoded
(Figure 1) as the source data for the logic simulation and test
generation process. Figures 2 and 3 are a listing of the input code
needed to generate tests for the unit., Figure 4 is the test sequence
generated for the schematic and Figure 5 is the report of the test
effectiveness for that test sequence. The test patterns are then
converted to the ATE (automatic test equipment) source code and are
ready for use on the ATE. :

Such methods have been applied very successfully in the last decade on
a nurber of aircraft programs. Boeing programs have made extensive use
of various commercial test generation techniques as have virtually all
major avionics manufacturers.[3] The military depots have, in like
manner, used these techniques and have reported order of magnitude cost
reductions over manual techniques. [4]

Since, the advent of LSI and VLSI (very large scale integration)
technology and the application of microprocessors in systems, it has
become increasingly difficult to develop the necessary simulation
models needed to generate tests. The computer and model development
costs can exceed the value of the equipment itself.

Because of the dymamic state of development in the semiconductor
{ndustry, models developed for simulation and test generation can
become obsolete before the models can be developed and validated. In
the past, once a "74/54" series part-library was developed, few changes
were needed and the modeling costs could be written off against many
users. In the current VLS] state of affairs, for custom designs, models

Page 3

. ’ ~‘%3!!-‘"”~W B ca.
‘ L‘IIIIIII -II-.. - -'. T T LG A Sy e

HLEE T

Rlia? W

will probably be used only once, resulting in high set-up costs for
test generation as well as expensive computer runs due to the large
number of gates needed in the models.

Aside from the cost and modeling difficulties for the new
microprocessor based designs, there is some question of the adequacy of
the tests developed using the stuck fault concept.

Most test generation techniques are designed to develop static tests
only. These simulators only approximate the time domain behavior of
togic gates. Since 30 to 40 percent of the failure modes in VLSI are
dynamic in nature, a test generation program reporting 100% of the
“stuck-at" faults detected is probably only 70% effective for the total
fault universe. This means that the remaining untested faults must be
detected and isolated at the next higher assembly level. The usual
symptom of such a problem is that the UUT (unit under test) will work
in one sytem but not another. But when returned for test on the ATE,
it always passes the test.

There are two other considerations for microprocessor systems that are
unique. Such 2 system can be tested to exhaustion at the part level and
subassembly level but yet fail in the system. Because microprocessor
systems consist of hardware and firmware, testing the hardware and
firmware independently does not mean that when the two are integrated
the system will function as expected. Microprocessors exhibit failure
modes, called pattern sensitivity, which are dependent upon the
instruction sequence executed. Thus if two programmers were to write
code for the same application, it is possibie that one program could
function normally and the other fail due to the peculiar sequence of
instructions used by one programmer's code and not by the other.

For these reasons the built-in test concept, where the microprocessor
exercises itself with a stored program, can only check out a fraction
of the total failure modes.

Th:- ideal approach is one where a complete checkout of the hardware and
firmware, within the context of a dymamic test, can be performed.
Further, the test generation technique should be capable of rapid
modification as the system design matures, and be inexpensive to
impTement. Hopefully it would be a matural extention of the normal
system synthesis and engineering process. The algorithmic test
generation procedure is an approach which can meet these goals for a
large class of systems.

ALGORITHMIC PATTERN GENERATION

Algorithmic pattern generators have found wide spread use in memory
testing. Because of the highly ordered structures of memories, the
efficiency of testing is greatly improved by using special hardware
pattern generators instead of the classic truth tables. With the
introduction of programmable pattern generators, millions of tests can

be generated from & few input parameters. This also obliviates the need
to store the truth tables in expensive ATE.

- B

As an example, to keep pace with memory development, a number of
algorithms have been developed, fe., "ping-pong", ‘*butterfly", etc.
Such techniques have reduced the cost of test equipment and made it
possible to effectively test the most complex memories with a2 minimum
of set-up costs. However, because of the differences.in the design and
manufacturing methods of memories, there is still no single completely
accepted sequence of test algorithms available to completely test a
particular semiconductor memory part.

The algorithms needed to perform a specific type of test for memories
are well-known. For the type of systems under consideration, fe.,
real-time microprocessor based control systems, no general pattern
generation techniques have been developed to date. Most of the test
procedures are based on exercising the instruction set of the
microprocessor, or a simple input/output wrap-around test.

For the class of applications that are describable by transfer
functions, it is possible to generate a set of algorithms that can
create test patterns in a manner similar to that described for memory
tests. Further, these patterns are dynamic in nature, and can be used
to checkout the hardware and firmware to certify it's integrated
adequactly for a particular application.

The advantage of algorithmic approach is that faults in the system
which have no effect on the intended use do not cause the unit to fail
the test. For example, if a particular instruction of a microprocessor
was faulty but it is not used, the fault is a 'don't care' fault. (If
two programs were written for the same application and one programmer
used the faulty instruction and the other did not and there were no
coding errors, one would pass the test, the other would fail.) In like
manner, if a memory cell were faulty and it was never used, the fault
would be a ‘'don't care'. If the "stuck-at" test concept were used to
develop tests, a useable unit could be rejected even though it could

adequately perform the-intended mission. Such rejections tend to
increase the overall cost of systems.

“The algorithmic test pattern generation concept tests the suitability

of the total system for an application, including real time software
and hardware performance. However, since the test procedure {is

application dependent, it does not assure the hardware is adequate for
other uses. An advantage of the technique is that it is not difficult

to synthesize the algorithms needed to create the desired test patterns
for subsequent users,

ALGORITHM SYNTHESIS

Systems are frequently described in block diagram form with transfer
functions as shown in Figure 6. Generally the system under test (SUT)
and the "plant” or the controlled object are easily partitioned into
independent and distinct transfer functions. For example, if the
controller is digital, the transfer functions are usually represented
in 'Z- Transform' form and the 'plant’' in conventional LaPlace
transforms. Generally, the systems analysis activities have developed
numerical simulation equations for the system. But these are usually
too complex or more detailed than needed for this application.

Page 5

e - tanm ann
& e e

- o ar——

———

The first step of the process is to convert the SUT transfer functions
into difference equations. These equations will be used to develop the
outputs of the SUT, given the inputs. Since the Z-Transform parameters
contain the sampling rate, the test rate is constrained to be that used
in generating the Z-Transforms.

If the SUT transfer functions are LaPlace transforms, they must be
converted to Z-Transforms. Generally, the step-invariant transform will
provide an exact time-domain solution for most situations. The

rocgdure for.performing these mathematical operations are well-known.
5,6

The difference equations developed at this step miSt be exact, because
they form the basis for the algorithms that will generate test patterns
for the SUT. The algorithms will probably generate test patterns more
precise than those implemented in the microprocessor program itself, so
the test procedure provides a quality control measure for the numerical
methods used in the software. Such a quantitative measure is & valuable
by-product of this testing approach.

Since the SUT generally has dynamic feedback signals from the plant
being controlled, its transfer functions must likewise be translated
into difference equations. These equations will generate the necessary

feedback signals needed to dynamically test the SUT in the feedback
Toop.

However, these equations or models need not be as precise as those for
the SUT, but need only be a reasonable approximation of the environment
the SUT drives. Thus, $n many situations the c¢lassic underdamped
quadratic transfer function can be replaced by a single low-pass pole.
Since stability amalysis is not the goal, but rather the generation of
feedback signals, such approximations greatly simplify the synthesis of
the test generation algorithms without reducing the wvalidity of the

“test procedure.

AN EXAMPLE

Figure 7 §s a block diagram of an autopilot of an experimental missile,
the T6. The T6 afrframe is a 70 pound modular test vehicle designed to
accept a variety of six inch diameter seekers. The T6 autopilot is
typical of the type of real-time control system amenable to algorithmic
test generation techniques.

For purposes of dillustration the pitch channel will be used in the
example, but the method can readily be extended to include all the
channels and modes of operation. Figure 8 is a block diagram of the
pitch channel of the autopilot. The first block is the pitch
contoller, the second block the actuator controller. Both of these
functions are contained in the microprocessor software and are the
objects of the test procedure. The other blocks are the missile fin
actuator and the missile aerodynamics. The feedback to the autopilot is

via a gyro which is assumed to have the transfer function of an
fntegrator.

Page 6

An algorithm for the first block is developed in equation (1) by
expanding the Z-transform into a difference equation in the usual
manner. The limiters are coded as shown in equation (2) and in like

manner the actuator is expressed as shown in equation (3).

IF R(1)>16/.18 THEN R(1)=16/.18

IF R(1)<-16/.18 THEN R(I)=-16/.18
A(1)=R(1)-F(1)-.667*[R(1-1)-F(1-1)]
A(1)=.2184*A(1)

IF A(1)>22.5/.18 THEN A(1)=22.5/.18
IF A(1)<-22.5/.18 THEN A(1)=-22.5/.18
| F(I)=.6*A(1)-.4*F(1)

| CUT)=K*EXF(1)42*F*C(1-1)-G*C(1-2)

] easily calculated

conversion to FACTOR is a simple procedure.

Page 7

——p—
i SR iy o
- % m

R(I)=[C(I)-S(1)]+(1-.9182)*[C(1-1)-S(1-1)]-0.9182*[C(1-2)~
S(1-2))-(.6434-.2302)*R(1-1)+(.2302)*(6434)*R(1-2)

(1).
(2).
(3).
(4).
(5).
(6).
(n.
(8).
(9).

, Since the objective of the test is to checkout the autopilot hardware

! and software, a single pole low pass filter is used to represent the

{ actuator in equation (8). A quadratic transfer function in equation

; (9) is derived from the Z-transform of the LaPlace transfer function.
An integrator is used to approximate the missile aerodynamics.

The scale factors are important (0.18 deg./LSB in the example) since
these values are used to define the vatue of the least significant bit
of the data generated by the tester. With the gains fixed as shown for
4 the test procedure, the scale factors for the inputs and outputs are

To checkout the algorithms they are converted to a BASIC program and
run on a computer. A listing of the program is provided in Figure 9,
and the response to a step input is shown in Figure 10.

modified slightly to be in the source language of the target tester.
For this example the test system is Boeing's Sentry VII! test system

3 Once checked out using the BASIC program, the equations need to be
: (Figure 11). The source language is FACTOR, an ALGOL-type language. The

4 To develop the detailed test program the microprocessor hardware
interface must be defined. In this example an 8 bit data bus, one bit
hold, and ready control are assummed. It should be understood that the
detafled design of the particular SUT establishes the definftfons. All
inputs and outputs are multiplexed on the system data bus.

S

e

——

. e e -

adrtae— - -

The first step is the definition of the input/output pins of the SUT.
Also control pins are established along with the input output sequencer
signals and the data bus control lines. The test rate is set -up by
tester commands in the manner peculiar to the individual tester The
tester driver is on when the “DA" command is active, off when the "DB”
command is active. The tester is checking the output data when the “"MA"
is set and ignoring data when the "MB" is set. In the FACTOR code
“DUT[DADB]=1" means the "DB" s set. "DUT[DADB]=0" means the "DA" is
set. In like manner, "DUT[MAMB]=0" means the "MA" is set and
"DUT[MAMB])=1" means "MB" 1is set. Other testers will use similar
techniques, but it it important that these functions be performed in a
dynamic manner (on-the-fly) otherwise the test data will not be vaiid.

The FACTOR source code is shown in Figure 11, and a compiled listing in
Figure 12. The generated test code is shown in Figure 13. It should be

noted that the actual code is significantly longer and only a small
portion of the actual code is printed.

GENERALIZATIONS & CONCLUSIONS

The algorithms developed in the example were selected to illustrate the
techniques of "algorithmic pattern generation” and only illustrate one
of many possible approaches to modeling systems for test generation
purposes. The recursive difference equation, based on the Z-Transform
calculus, has many advantages in that the theory is highly developed,
and is a very natural way to develop a dynamic test.

Those versed in simulation art will find many ways to construct
algorithms that do not require transfer functions or the linear system
assumptions.

The nature of the algorithms is constrained to a degree by the target
tester. The system used in the example, the Sentry VIII manufactured by
Fairchild, is particularly easy to use to create test algorithms. The

, utility program "LMLRN" handles many of the tester control functions in

a very simple manner. Other testers may require an additional
processing step to perform the test control generation function.

Although not mentioned in the example, it is feasible to expand the
input/output definitions (pin lists) and 'learn' the test data at the
subassenbly levels to form the basis for developing production and
field support tests. The tester control functions for such an
application would be significantly more complex, but with careful
design of the subsystem interfaces, the process can be made very
productive.

The approach outiined is compatible with the normal systems engineering
approach. Simulation models used to support systems analysis activities
are directly applicable to the test generation process. However,
further research and analysis is needed to define the adequacy of test
grocedures developed using functional approaches instead of the classic
stuck-at" methods. The acceptance of equipment with possible
manufacturing defects, even though the defects do not impact the

intended function, presents certain cultural problems to a quality
assurance operation, fe. "Zero-Defects".

Page 8

c—- o —

il S

. R,

REFERENCES

(1) Seshu,S. and Freeman,D.N., "The Diagnosis of Asynchronous :
S Sequential Switching Systems", IRE Trans. Electronic
L Computers, vol. EC-11, pp. 459-465, August 1962.

(2) 7O 5171-15-8-29, "Program number 47264"

(3) "SELECTION GUIDE FOR DIGITAL TEST PROGRAM GENERATION
SYSTEMS", Navmatinst 3960.9A, 27 MARCH 1979.

(4) Pedersen, G. "Reducing ATE Software Development Costs”, q
AUTOTESTCON, Sept. 1979, Minneapolis, Minn.

(5) Breding, D.R. "Digital Simulation of a Seismic System”,
Proceedings of the 26'th International Instrumentation

Symposium, Seattle, Wa., Advances in Test Measurement,
Vol 17, pp. 297-299.

(6) Stearns, S.D. 1975, "Exact Digital Models of Continuous
Linear Systems", SAND75-8012.

-—
POV
S e .

.
@ i e =

082642 13quiny buimesg—weibelq 118wayss pieog 3nalY 1aMiQ/1apoaaQ Jequnp 3s3) “§ anbly

wourety .a...!n!.-uw“v-o,d AU WAIK] 8000w equny way

"

ﬁl SN
{ {3
q
L € T g0 $'ela
. s
N
. .-u“
u-d : v i
« 2
ll. L) 5 ”- !
mt L '3
) o »”.
wlela s | - |4
o
‘. o [*
£ B % ‘»v
1} g
wi~FReE /
i
{3
e y 2 |t
(]
asle-d L0
L]
-n'- ? Iﬁl‘.
- [" (1] ~n
L 173
£ for Samens
Devas it @ h d..n»“
o« b ‘'
el ‘ e
t-sc@ E253238:~3 Jrn3s¥>ccu- ln.u....-nw._
seva] FFEFFEEEES] EEEFHHEEEF Fislatslaiac=y
{
- e 2 IR ,p i s »

4

yiomiapN ‘Z ainbly

TFd %
[1]
| £ 81
[1]
YR
EY]
01
33
81
(Y]
83
FIXIL [1]
Mtla2 B4
il [1]
[IT¢1 03
[TTE] 3
11841 83
[{1}] [1] ueg 091
11il bl 1184 931
atil [1] 104 o9t
11852 ou efeg 231
M] Cl04 Col
h:b_rl[hlr.
X1 s104 951
(1371 un 8104 51
[1X)] [1] 204 251
J1ie) . 93 wvoq c4l
13 03 T
n#d a2 4 feg w]
T [1] C28d vl
iz [} 4. Il
[11Y] 03 4 (ol
VLY [T 1184 o1
[1}4] 23 N4 Hl
i 22 il24_ ot}
3] (1) uwnéd 61
11162 31 Mg a(]
€132 (1] nreq 021
FTHH 03 _ 3eg o2}
1IN [3] 4d0é 02§
(132 03 wweg P21
DL A A M A A M T O I A S T 312K}
1404°98E12)51P0g°vsE1T)*1%0¢°04}° *

.u-s.n.a---w

[Z]
(K119 ~.~n ¢) ’
.e-.udwamn..- .L-cﬂdw*mm.s-.s-.a-n A s...o—.n—u.-s- ooon 1 [2]

SESET22C0 Q) IE9612°CE04D 460 (1] A0
.——.._..nn..aqoqqaw-.qu.-., st iIAs8) .__.
[IIISY LIS PTRILT)

SYTMIST 48 AT LY TAI L]
TITs613%

IV TIISEIIFETrar 1T ISE12°9204) TN 18612°004) 9930
ANCASAIN »

A%3434%18 22008 Audg 2008 Moren 24322 $214

¥ vE 7t

Page 11

(Papnyaua)) yiomiaN ¢ asnbly

Y ~AMd A2
ANTIIV4YD WISHIVE 20 L3¢ b1°Cy © DAWHISEY £IVNIIS 8l 1%
AMILAN (131
CR44000°224184°124104°% 24404 “—n
1L
1"e
Lik
d0é* 1184 [$13
esloe ' Teqthlogtalog ooty ading 24°S204 Pk
1606°3004%1 204w 04°Y104°0004° I8 ¢ NNI e LNONIA 146
Sereagtuse 0g4°A0d° 20 gu04'Neg0g"
0 TR 04°Ca* 200°S06° A4 CE04°2CHd* D04 0204°6C04%9(04 NINIA onw
nuw uxms 2
[1] *ed IS
— a2 yod 9:d
wn 0] €R24)04 32
§17) -} 1l¢i%g 252
Asd 33 1ditd 5}
LIY] 23 “lateg o
[{Y1Y]
(1Y
[H{Y]
21
il 03 Claisg 2
PITIS T D) __olqing of2
[HT] 31 (lelrd ofi
4l i 21410¢ 26R
[1T] 03 1ldi04 062
8111 3] plejsge 92¢
i 81 - sdits W2
£8(it1 (1] 04)0¢ o2}
I 9 14194 2
-n-||||bn|||||»pnn||b-
el [TITT)Y]
204 n- vd)04 12
(1] L) CAlod ol2
(L] 3] d4)0q 12

34 Vdidd (il

4 INTINT

Page 12

- ——

aouanbag 3sal buiynsay ‘p aunbil4

viototootiatioatuatooootTninv LRI LIt an IR IR IR aRLasRaREtIRITvI T IIILL SNILI0VTTINICCI0L00000 SECC
* 2101013211011uv2100100000 LINIRITAITLRRIRIARRIARIRINCRIRETREREenIRt S LNLOLLTIRILeQomGRaue PECO
¢ LaldtwdtlatiavlvtoldotiiutintrennateesngansgesasgatpIgIatvIguIuILILY dlulubulIITTI60COCLC00 1600
* 0101013011011001CLIOCOCtORIRYRRIRARRRARERARIRRRRREARRIRIRINTVLERIY S 1J10ISIRLITLI000vI00WQ _£COC
. c-e—o-co-cn—nc—evncacc--_——-—————-—u—a—_-————-—-——_———-—-ud-—-—-— __;ct—c____—-nn:a1 LU G280
53

N o—e——;ouu—u-—eg—t;_toeo_—-—-——-——c--—-—-—-u-—-_—————-—‘—-—‘-- T1U1106T1 11010000 00M0 1200

M) P F T PP IRN G M AT A LN AT T :EEEEEEEF;::QCSESF#F

TToLu1104991011221001000GE IR SITTATLINIweb NI ARTRBTILITACLETRITIONTNNY 110121 TTTT0T0094C0%0C0 €2¢C

N LI P P NPT TSR A RS R AR TRURTNORTURURNTUUCEUTTURAT)40 6§ U U) 0 DY 58 TSR G SR 3 S-S

R I P R s e I RN 11wal 1021 1uIC0C0IL0GCO f20C

b E:.EEEEEEI% LM 0L

e s n § 1

* yews) dd0uvani 3CUuuCOGI LRSI LIRLRaRRITanEtsls] 1

. .5288..:.:...s.ec&..:_::::_...:::::::.:::::_:: T3uLiui1320€3223620C€0 o190

Ml L7V C R I LI A F R N AT A RN 90 .:_:F:::CE:.:::;'.:B_::2.&&.82...;» [{—-—

v ""...SS.:..E...:..S?.. 22:.::.::..:::::_::::. “:::._._..n,.ewmue.hm%wn ».mw
||||.l..b|..:>...a.:....:{t...:.:_::.::8:::_:.::::::: R I T I A3

hd .lm.mq..oﬁcktubmk..r:s:_::Z:E:::.L:—EEECCECCFES_. 20500 elcc

L T B e M e L M T T P H T R O A L R I A T 2 HIT70C™Ag fiee

¢ 1CSuIvuUuuw00l 169003111001 TELIT LI :tE»EuthhE[:_EE: 1QugzeQ _210C

T e e g g e e e R L ::::u 181110 A Taot :.mm

UeGlIudoded :.;_.._"_] ” Tluall 3 h«. it :r...r.xm _xzﬁ 1] ’m.a

MR T S I A A TR YYY :::_::_: ::«[_ Qudiltyaginy__ecce

¥ _m..w_...:..e,..::w“..m.r_:oe::::“T...;::._,:F_.__:::_::::_::_] TOTRListitenutttacetint 3:.

d :.P,.T.EE::—ECEEFE_EEEEE:EE:E:l—CE

4 ::.::2_9.::::..":“..2:" “ tlotutinniin .:::: “_:“ tinititocsttie imnn tace

v 0
- S 2 il totciivIninety

. ::...o:*_ml;_m.ﬁvzc_ér E;EEEEEEZF—ES::::EHEI

Tt 0 i T TTTILul 1T ITETLILiului 0U3IUI S0 uu L db VL ITLUwv DN P IFINR S Y TRLLRLRTTIRTIININIItL 1hfe

¥ 1A 1M Sihevt

>

. [}

T TI0eNiveNc 210 [}

. ----——————o.~0mcn-

.weou v [T I3

12 39v4

HYL VAL L

N .W.,. LT - T~ Yo

- ey Em— se

£0°9e°91 s3wig o

Page 13

adoas weiboid 353 °G aunbi4

]
: .
[00°00t [1% [1% § (17 n '] w0l ”"e "? "2 SISEVVI IMIWAIARD TV
I
[}
| [ssee @ 2 o s & —ease 2 2 Y 121430 4340 Iup_
u ASVYY S MICATINE SITSVY)
[] o0 [] [] [] L] [T [[] [] 133430 SwOME WP
3 . 15Y2) iy o1pAYOMl SISSYYD
|) eger gep {71 %2 L PR°QK __ZeR per Esl 123430 If¢1l ¥INLS 3w
u LSVIY AV MIONIIN] SISSVY)
® 00%cot [[}] [I3} [13] L) ¥I*031t vbl est FI1} 133430 JN4IN0 WINLS IO
. AS¥2) iy Sy1OAYME SISSYIL
L]
ne QIMO IR ° INgiM) 03131533 23121130 03w3Inisymy yigeny <
3 K] N3N ¥39unn ANy wiol uﬂu!-uuog [V ERIET] -uo.;q-c V3w i AdA3 ~—4
TYWN315- INION1IX] . SITNIIS=-8 INLOVYIINS ”
[
Q.

$ITSVII M2 WAINDY

¥
* [3D L 1Y s s m [03031 ({3 e [} wing

i [[YIYY 9 r M . ¥ ssse g n " S0

u [] seoe [] 9 [) m [] (XYY] 2 L]] Sivieg

i [00°0¢1 ’" g ’"s 1311 o) Q0°¢31 (111 o e ¥ i SINgME wIrS

; [] e 2P ']] (113 {18 (1t4 ” [} £99°021 (144 (T34 T4 SANGLNQ ¥INES

; 104100 2313003123130 _QIvI0ISN0D wiewin ° 104110 03123130 23123132 £3IvInisem gdaent

' 1Nv3¢ wIBNN (110 wiol n 0INg23I0MN LYPIeid wIduny L AL L] T 2442

m TIWNITS-T InTGAY] ¢ SIVNIIS~8 INLINTWNT

2 ¥153430 WhdTKion1

T

i
I'd
[]

", - rude
| . Tl

- — — A
; {- CONTROLLER | “PLANT"
| : 61 ' G2 (s)
! | |
! |
']
‘ I SYSTEMUNDER |
‘ | TEST(SUT) I
{_(MICROPROCESSOR |
9 Figure 6. Block Diagram—Typical System

i gl

Page 15

e e - A 4t

T e g

we.belq jeuojoung jopdolny £ ainbiy

r—=—"A
|)
| voul 0o YAy
|uoiynLdvy
| W) >0 009T
e S | S LU
e «.t»n.xu ML S) 5O ONT oYy
nan 8| > L 90Uy
A
M| %) %0mTLl nedy
r——"
| r
| son|
(woivnidv| oL-
T-O-OT LI
- ot + aivy] o
[V | tf.:u oie —_
\AN ®
o
[d
(-
ﬂ —— J
[r =
— o .
. fre " 150 ¢ 2) 2°0-2)
¢2<.~:wz< 31vis L 1060-21 2
“ _ STTe
+x+ g
b 84 m — w— . — -
g eLan -2 ro0 jeO
(Le2)
ﬂ -_— J
| I
I o o
HOLVYNLIY - o - - HOSN3S
) RA% RO SE
+x+ 114
rl - L L 2IHS DM.NNQ Sdi °.w0
AL Svig s NiJ

e ————

PITCH
COMMAND
| s ACTUATOR
i + (2+1) 2091821 |8 | 021842 225 L«
: A (Z + 0.6434) (Z -0.2302) (2+0667) "1 57 ST+1
c

GYRO MISSILE DYNAMICS

0.2 02
s —2+—s+1
w (2]

é . Figure 8. Block Disgram of Pitch Channel
i E

FIGURE 9 "BASIC" SOURCE CODE FOR TEST ALGORITHM CHECKOUT

REM WhRATIERRARARE AR ETAA I ARTRARAR T TR RRdwirdddrd ki ddr

REM DEF INE SIMULATION VARIABLES
REM '

REM R=AUTOPILOT CONTROLLER OUTPUT
REM C=MISSILE FEEDBACK

REM A=ACTUATOR CONTROL SIGNAL

REM F=FIN FEEDBACK SIGNAL

REM S=COMMAND INPUT

REM TRRERATRRRARRERRRE AN TAATRNERR AN RRAR TR Rk R i kedrkdrdirddd

10 DIM R(3),C(3),A(3),F(3),5(3),Xx(3)

20 REM L sl ddadddad st s gt dddseddadadissd gty s iy

30 REM INITIALIZE ALL VARIABLES

A0 REM S *rrs skt dd bk d kv h ek ko bk it e b dek d i bk dedrt i ek
50 MAT RsZER

60 MAT C=ZER

70 MAT A=ZER

80 MAT F=ZER

90 MAT S=ZER

95 MAT X=ZER

100 REM Lo d s dta it s ad el el gt d 2l a 2l il g grs g g 2l e

110 REM SIMULATION OF CONTROLLER USING DIFFERENCE EQUATIONS
120 REM L2 s a0l o g g sl 2 s dldd] 42 gDl 1l s 2erardrdgriangr g e ey
; 150 REM
i 160 I=3
200 FOR J=1 TO 100
205 IF J=3 THEN S{3)=10
210 R{1)=C(1)+.0818*C(1-1)-.9182*C(1-2)-.4132*R({1-1)+.1481*R(]1-2)
250 REM

260 REM Ve dedr e dr de s I i e dede o A e A i o A O e v B A e S e e gt i ede tr e e dede e e dede ok

. 270 REM GAIN AND LIMIT CALCULATIONS FOR CONTROLLER

1 ,4 280 REM ***********************t**t*f********************Qﬁ
P 290

S 320 IF R(1)>16/.18 THEN R(1)=16/.18

L 330 IF R(1)<-16/.18 THEN R(1)=-16/.18

Lo 340 REM

350 REM Rt ddd st il s d gl t f 222 a2ttt T2l t s TR d e Y

WAL WM -

360 REM ACTUATOR DIFFERENCE EQUATIONS

.’

i 370 REM Sttt thhddh e h e d e ke dd e R Ak AR A R A d b A ek kA dd [|
380 REM

; 400 A(1)sR(I)-F(1)-.667*(R{1-1)-F(]-1))

! 410 A(1)=.2184*A(1)

405 REM RARNRREXNARIRRRRE NN R IR R R TR AR R AR R I TR ik & s de e dedra ek

406 REM ACTUATOR GAIN AND LIMIT CALCULATIONS
R 407 REM AARERAERRERRANRAAAAERAERRRNERRAEEARERRA R TR AR hdrdd
3 420 IF A(1)>22.5/.18 THEN A(1)=22.5/.18
» 430 IF A(1)<-22.5/.18 THEN A(1)=-22.5/.18
440 REM

3 450 REM RARRRRRANATRTRRRRRRRRAR R IR AR dr ik o e dre e e dr drededrde e e dede

450 REM FIN SERVOCALCULATIONS

470 REM # ottt addhtdhddkdhd At dd A AR A A rr b hdd b rh e A hhrhhrddd

480

.
- o am——— 1

ok
o Page 18

,,,,, — e e N e e ——— T T :'*‘

480 REM

500 F(I)=.6%A(1)-.4*F(1)

510 REM

520 REM Whaaidddaaadwh ke Ak k kst stk e e e ok
530 REM MISSILE FLIGHT CALCULATIONS

531 REM :

5§32 REM MISSILE NATURAL FREQ.=120 RADIANS/SEC.

533 REM

534 REM MISSILE DAMPING FACTOR =,7

535 REM

536 REM GAIN CONSTANT = .2 c
540 REM ¥#shsseddsd s db e hhh ks kb d ek s etk ket ke ke
550 REM

560 K=1,24882

570 E=.313568

580 F=.458459

590 G=.30851

600 C(I)=.2*K*E*F(1)+2*F*C{1-1)-G*C(1-2)

605 X(I)=.2*C(1)+X(1I)

606 C(1)=S(1)-X(1I)

610 REM

620 REM Frde A i e dedr de drdr drdr dr bk de e dr e e A de e s de de e de A e de e de ke e de e ek de s e e s de e ook

; 630 REM TUMBLE VARIABLES

1 640 REM L2 2222 222 2823 22 231 2 3 2 3203 3 022 g 2 g g gy arariy gr any iy
650 REM

i 655 PRINT USING 741;J,S(3),X(3),R(3),A(3),F(3),C(3)
660 R(1)=R(2)

f 670 R(2)=R(3)

i 680 C(1)=C(2)

: 690 C(2)=C(3)
700 A(1)=A(2)
710 A(2)=A(3)
720 F(1)=F(2)

g 730 F(2)=F(3)

S 741 IMAGE 7(XDDD.DX)

l) 800 NEXT J

S 9000 END

snduj dais 0 ssuodsay 3521 0} anbid

l .4 L 1

l i
3 31NV NiJ 31ISSIN — Js
; M suz@nON 1Sl . . m S
¥
1 m “
: m o
i
|
{
_, 1s
§
i SNOJS3Y
i : HOLId 3VUSSIN
i
,w _— BTN
i AN _
,/ , GNVINWOD ANdNS
—w H
)

“ St
ﬁm

em v——

FIGURE 11 ALGORITHMIC TEST PATTERNS FOR SENTRY VIII TESTER
SET PAGE 4095;

REM o v e o e vl e ok 3 o e g W o o e ol e v ok A S v S e o s s S e vk e e de e o ek e e ok o

* SET UP PIN DEFINITIONS FOR ALGORITHMIC *
* TEST PATTERN GENERATION *

******************t*****t********************;

DCL PDATA<8>/10,11,12,13,14,15,16,17/;
DCL PHLD<1>/5/;
DCL PRDY<1>/3/;

DCL DUT<5>;

DATA=]1;
HLD=2;
RDY=3;
DADB=4;
MAMB=5;

EXEC LMAOD(0); REM INITIALIZE TESTER MEMORY;
EXEC LMLRN(1,PDATA,PHLD,PRDY,1,2);

REM SET UP PIN DEFINITIONS IN TESTER;

REM*******t*****tt****t***********t***t***********

* DEFINE SIMULATION VARIABLES *

f*t***********t**tt********ﬁf*************;

DCL R<3>;
DCL C<3>;
DCL A<3>;
DCL F<3>;
DCL S<3>;
DCL X<3>;

REM*‘*’*****"""***'*tt*t*tt***i**t*ttﬁtt****'*‘

* SIMULATION OF CONTROLLER USING DIFF. EQU. *

ttii*ttﬁﬁﬁt*t*tttt*titttitt*tif***i******t;

1=3;

DUT<HLD>=0; REM START PROCESSOR;
DUT<RDY>=1;

DUT<DADB>=0;

DUT<MAMB>=1;

EXEC LMLRN(4,M,DUT); REM GENERATE A TEST;

Page 21

oo P -
it et

.
. ——

. S ey

M=M+1; REM TEST NUMBER COUNTER;

FOR J=1 THRU 100 DO BEGIN
IF J EQ 3 THEN S<I>=10;

R<I>=C<1>+.0818*C<1-1>-,9182*C<]-2>-.4132*R<]-1>
+,1481*R<1-2>;

REM*******************f***************************

* GAIN AND LIMIT CALCULATIOMS *

******************t***************************;

IF R<I> GT 16/.18 THEN R<I>=16/.18;
IF R<I> LT -16/.18 THEN R<I>=-16/.19;

REM***

* ACTUATOR DIFFERENCE EUATIONS *

**;

A<I>=R<I>-F<I>-.667*(R<I-1>-F<I-1>);
A<I>=,2184*%A<I>;

REM***

* ACTUATOR GAIN AND LIMIT CALCULATIONS *

**;

IF A<I> GT 22.5/.18 THEN A<I>=22.5/.18;
IF A<I> LT -22.5/.18 THEN A<I>=-22.5/.18;

REM***

* FIN SERVO CALCULATIONS *

e e g vk v e 3 e ke e vk v s v A Fede sk de dede e e e o de de e ik de de sk vk sk dede dede ek ke ek

F<I>= 6*A<I> - 4%F<]>;

rn

REM***

* MISSILE FLIGHT CALCULATIONS

*

* NATURAL FREQUENCY= 120 RADIANS/SEC.
*

*
* DAMPING FACTOR=.7
*

* GAIN=.2

ede sk dede ve e sk v de e s A s v e v e e e g dede de sk et v de o e s deviede de s s s o de e de ke e ok

* * %

e % % % % *

L=1.24882;
E=0.313568;
F=0.458459;
G=0.30851;

C<I>= 2%K*EXF<I>4 2% * (<] -1>-6*C<]-2>;
X<I>e . 2%C<I>4+X<I>;
C<I>aS<I>=X<I>;

Page 22

ﬂ[R et ST T e ,'—'E

REM***t**t*******ttiti**ﬂ*********t*****t*********

* TUMBLE VARIABLES *

********tttt**i**t*****ﬁ********************ﬁ*;

' R<1>=R<¢2>;
i R<2>=R<3>;
i C<1>=C<2>;
f C<2>=C<3>;
‘ A<1>=A<2>;
A<2>=A<3>;
F<1>=F<2>;
F<2>=F<3>;

REM*******************f***t***********************

: INPUT/OUTPUT SEQUENCES :

* 1) INPUT COMMAND (TESTER DRIVES BUS) *

* 2) FIN COMMAND (SUT DRIVES BUS) *

* 3) FIN FEEDBACK (TESTER DRIVES BUS) *

* 4) GYRO FEEDBACK (TESTER DRIVES BUS) *

**;

: REM INPUT 1'ST INPUT PATTERN:

DUT<DATA>=S5<I>/.18 AND 377B; REM RESCALES AND COVERTS
DUT<DADB>=0;
DUT<MAMB>=1; REM TESTER INPUTTING DATA ON THE BUS

TO AN INTEGER NUMBER;

EXEC LMLRN(4,M,DUT); REM GENERATES A TEST;
M=M+1;

REM OUTPUT ACTUATOR COMMAND:
| DUT<DATA>=A<I>/.18 AND.377B;
! DUT<DADB>=1;
: DUT<MAMB>=0: REM TESTER LOOKING AT DATA ON BUS;
Lo EXEC LMLRN(4,M,DUT);
o M=M+1;
REM INPUT FEEDBACK FROM FIN SERVO:

| DUT<DATA>=F<I>/.18 AND 377B;

' DUT <DADB>=0; REM TESTER DRIVES THE BUS;
DUT<MAMB>=1;
EXEC LMLRN(4,M,DUT);
M=M+]:

i REM INPUT GYRO FEEDBACK;

o DUT<DATA>=C<1>/.18 AND 3778;
: EXEC LMLRN{4,M,DUT);
M=M+1:
END; REM END OF FOR LOOP;

Page 23

Y S — e

oy

. - et g« f@‘vw’_uw o R -~ . .
L A Ay Awh
i A i
T Ty S W o

END;

REM END OF TEST PROGRAM;

Page 24

ko~ ~»

eree FAIRCHILD FACTOR COMPILER REL: 3.1 rrey
«« SOURCE FILE: «ED DATE: e
«s DATA FILE: TIinE: 00: 3% L ad
ee BYSTEM CONF: 86 nvi PHMUA COND: 00000000 oo
1 B8ET PACE 4093
2
4 REM #4000 00000000a00000000000000000000R80000aR0aes
2 ® SET UP PIN DEFINITIONS FOR ALGORITHMIC .
2 & TEST PATTERN CENERATIDN ' o
2 [T 2 2L LTI LLLLY T YL TTYZLY I TTYYYTTE YL N
-4
2 DCL PDATAILBI/10,11,12,13,14,19,16,17/,
3 DCL PHL.DL1)/3/;
4 DCL PRDY[11/3/:
)
L] DCL DUTLS):
&
[DATA=1,
7 HLD=2;
-] RDY=3;
9 DADB=4;
10 MAMB=3;
11
11 EXEC LMMOD(O), REM INITIALIZE TESTER MEMORY)
12 .
12 EXEC LMLRN(1.PDATA, PHLD. PRDY, 1,2
13
13 REM SET UP PIN DEFINITIONS IN TESTER:
13
13 REMSSaaaattaaicisantaiocaititetttsletdednstaanetass
13 - DEFINE SIMULATION VARIABLES .
13 YT TIITIERTTTIX YT TY T T TT YT YTRYTYTY YT Y T
i3
13 DCL RC3)s
14 pCL €Ct3M:
15 DCL AL3)
16 DCL FL3:
17 DCL SIL3):
18 DCL X3
19
19 REMAGRRANEERBEBBRRBR BB ER IRV BBURBBGE SRR URUSR G SRS
19 e SIMULATION OF CONTROLLER USING DIFF. EGU. L4
19 T YTTXLS LTI LLTLZ LTI TLY TR XA Y LYY LY L LA
19
19 1=3,
20 DUTIHLDI=0; REM START PROCESSOR:
21 DUTLRDYI=},
22 DUTL{DADB)=0;
23 DUTILMAMBI=1)
24
24 EXEC LMLRN(4, M, DUT); REM GCENERATE A TEST:
29
25 M=rtel, REM TEST NUMBER COUNTER:
26
26 FOR =i THRU 25 DO BECIN
27 IF v E@ 3 THEN SC1)=10:
29
29 RLII=C[1)+. 08168¢C(]I~-1)-. 9182«C[(1I-2])~. 4132#R(]1~-1)
30 +. 1481#R(1-2);
30
30 REMOERAPANEVIPI QR ENERTRBCCRNFVBRVEREVTRVOLBALBOEIRRE

Figure 12. Compile Source Code

Page 25

]

-.“-* .v..

778;

8

® OAIN AND LIMIT CALCULATIONS L4

L2222l 2 22222212 lZ 2222222122y syeyyyyl

IF RCI) OF 16/.18 THEN RI1)=16/. 18,
IF RILID LY -16/.18 THEN RLI)=-16/.19;

REMEG OGN GS400S400G000208RCRRSNGECGEREBNNERONEROERS

& ACTUATOR DIFFERENCE EUATIONS *
GIESIRNREEEEEIRRENESRENGNERSEBUBGGRRNNBEBREERE

ACI)=RIII-FL1)-. &67#(RLI-1I-FLI-13):
All)= 21BAsAL1))

REMO S 000000t s0iaciaisaetaiaaittiotassRiasntssnsnes

Cc & ACTUATOR GAIN AND LIMIT CALCULATIONS .
L2222 22 222212222232 122122y ee ey eyyyyl

IF ACI) CT 22.95/. 18 THEN AlI)=22. 9%/. 16
IF AC1] LT -22.5/.18 THEN All1)}=-22.93/. 18;

REMESESBRERRRSRSPRGEGGSRGSRSEIRGGEERERRASOGRIQERES

e FIN BERVO CALCULATIONS [
REEBRRER ARG BRRERER R R UGS S SR B N BB RSO R SRBBES,

FL1)=. &eALLI)- A«F(1);

REMES4ESEE4EEEFASRRBRBABRER AN L VERBBERFBFRSRUBEERNES
MISSILE FLIOHT CALCULATIONS

.

NATURAL FREQUENCY= 120 RADIANS/SEC.

DAMPING FACTOR=. 7

LI I BN BN B

-
-
L]
-
«*
-
-

GAIN=, 2
SRR ERBEERERRCRE B RBEBRBRB NGB RCGH RV U ERNEREEREGRE;

K=1. 24882;
E=0. 3133%68;
L=0. 456459,
©=0. 30851,

CLIdm, QuKaESF[I)+2uL#CLI-1)-0%C(1-23;
XCI)=, 28CCIX+XCID:
CLI)=SCI)-XC1ID

REMESQASEGABRGEAEHEEESSRRIGEERAARRERIS AT HETRAGESE

& TUMBLE VARIABLES .
NERGERRI SRR RS SR RO RNV B R AR B S B EERB VRSB R EBE,

RL1I=RL2
RL2I=RIINs
CC1)=CL2):
CL2I=CL3);
AL1)=AL2);
AL2)=ALD);
FCL13=F(2)
FL2I=F[3)s

WRITE(POD)RL{3], CL3, AL3), FL3), AL31/. 18 AND 377B. (AL31/.18) AND 3

REMO SR EEOREENEENILANRGENNOGRANENENRINONNNRENOsass
- INPUT/0UTPUT BEGUENCES -

Figure 12. Compile Source Code (Continued)

Page 26

s7 . 1) INPUT COMMAND (TESTER DRIVES BUS) .
57 . 2) FIN COMMAND (SUY DRIVES BUS) .
87 . 3) FIN FEEDBACK (TESTER DRIVES BUS) .
87 . 4) QYRO FEEDBACK (TESTER DRIVES BUS) .
57 .00000......00000.'0..0.0.'0.00..000060'00000';
87
74 REM INPUT 1 ‘ST INPUT PATTERN;
57
87 DUTIDATAI=S({I3}/. 18 AND J77B; REM RESCALES AND COVERTS
’8 DUTIDADB)=0,
%0 DUTIMAMBI=1; REM TESTER INPUTTING DATA ON THE BUS
89 YO AN INTEGER NUMBER;:
se
oy EXEC LMLRN(4, M, DUT)) REM OENERATES A TEST,
60 (o222 ¥
&1
61 REM OUTPUT ACTUATOR COMMAND;
61
61 DUTCLDATAl=AL11/. 18 AND 377B:
&2 DUTIDADB)=1;
&3 DUTI[MAMB =0, REM TESTER LOOKING AT DATA ON BUS;
: &4 EXEC LMLRN(4, M, DUT),
‘ &3 Meptel;
66 .
b6 REM INPUT FEEDBACK FRDM FIN SERVO:
66
66 DUTIDATAI=F[13/. 18 AND 377B;
&7 DUTLDADB 1=Q; REM TESTER DRIVES THE BUS)
68 DUTIMAMB)=1, .
69 EXEC LMLRN(4, M, DUT))
70 g
71
" 71 REM INPUT QYRO FEEDBACK:
: 73
71 DUTIDATAI=C(I1/. 18 AND 377B;
72 EXEC LMLRN(4, M. DUT))
73 M=)
, 74 END: REM END OF FOR LOOP;
74
! ! 74 END; REM END OF TEST PROGRAM,
‘ O COMPILATION ERRORS. 74 GBTATEMENTS

Figure 12. Compile Source Code (Concluded)

o .

SET
SETY
SET
BET
8EY
SET
8EY
SEY
8EY
SET
10 SET
11 SEY

CONCUVUIGPWN~=O

13 SET
14 BEY

16 SET
17 SET
18 SET
19 SETY
20 SET
21 SET
22 SEY
23 SET
24 SET
29 SET
26 SET
27 SET
28 SET
29 BET
30 BET
31 SET
32 SET
33 BET
34 SET

36 BEY
37 SET
38 SET
39 SET
40 BET

42 SET
43 SBET

40 SET
46 SET
47 BETY
48 SEY
49 BET

91 BET
S2 SEV
S3 BET
54 SET
58 BEY
36 SET
97 SET

99 SET
60 SET
61 SET

oA RAREERRERARRLERERRERERRRAREAREREREREERERRERERREREREEREREEEERER]

[=d
>
d333ca3es3>a3333833322333333338333332x33833a8

DA MB

3

DA MB

>
3833388

DA MB
DA MB
DA MP
DB tMA
DA MB
DA MB
DA MP

0010000000
0010000000
00310000000
0010000000
0010000000
0010000000
0010000000
0010000000
0010000000
0030000000
0010000000
00310000000
0010000000
0010000000
0010000001
0010000000
0010000001
0010000000
0010000001
0010000000
0010000001
0010000000
0010000000
0010000001
0010000000
0010000000
0010000001
0010000000
0010000000
0010000000
0010000000
0010000000
0010000000
0010000000
0010000001
0010000000
0010000001
0010000000
0010000000
0010000001
0010000000
0010000000
0010000001

- 0010000000

0010000000
0010000000
00310000001
0010000001
0010000001
0010000000
0010000001
0010000001
0010000001
0010000000
0010000000
0010000001
0010000000
0010000000
0010000000
00310000000
0010000000
0010000000

Figure 13. Resulting Test Sequence

Page 28

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0011100000
0000000000
0000000000
00113100000
0011100000
0130000000
0010000000
0110100000
0011100000
0001111000
0101111000
0010100000
0011100000
1010000000
1010000000
0100100000
0011100000
0011111000
0011111000
0000100000
0011100000
0100000000
1100000000
0111000000
0011100000
0111111000
0111111000
0011000000
0011100000
1000000000
1000000000
1101000000
0011100000
1111111000
11111131000
0101000000
0011100000
0000000000
0000000000
0001000000
0011100000
1111111000
1111111000
11310000000
0011100000
0000000000
0000000000
1110000000
0011100000
0000000000
0000000000
0110000000
0011100000

oy W Oye e

L W ey A
L T A “'r
- ‘

T Y - o R e

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
00025000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

